
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

Clear["Global`*⋆"]

1 - 5 Householder tridiagonalization
Tridiagonalize.

1.
0.98 0.04 0.44
0.04 0.56 0.40
0.44 0.40 0.80

Clear["Global`*⋆"]

m1 =
0.98 0.04 0.44
0.04 0.56 0.40
0.44 0.40 0.80

{{0.98, 0.04, 0.44}, {0.04, 0.56, 0.4}, {0.44, 0.4, 0.8}}

A = N[{{0.98`, 0.04`, 0.44`}, {0.04`, 0.56`, 0.4`}, {0.44`, 0.4`, 0.8`}}];
(*⋆A=N[

{{-−42,43,-−2,28},{43,-−98,72,-−26},{-−2,72,-−96,53},{28,-−26,53,54}}];*⋆)
n = Length[A[[1]]];
zeroVector = {};
For[i = 1, i ≤ n, i++, zeroVector = Append[zeroVector, {0}]];
Alist = {A};
Hlist = {};

Forj = 1, j ≤ n -− 2, j++, If[A[[j + 1, j]] ≥ 0, c = 1, c = 2];
alpha = (-−1)^c (Sum[A[[k, j]]^2, {k, j + 1, n}])^(1 /∕ 2);
r = ((1 /∕ 2) alpha^2 -− (1 /∕ 2) alpha A[[j + 1, j]])^(1 /∕ 2);
x = zeroVector;
x[[j + 1, 1]] = (A[[j + 1, j]] -− alpha)  (2 r);

Fork = j + 2, k ≤ n, k++, x[[k, 1]] = A[[k, j]]  (2 r);
H = IdentityMatrix[n] -− 2 x.Transpose[x];
A = H.A.H;
Hlist = Append[Hlist, H];
Alist = Append[Alist, A];

MatrixForm[Chop[A]]

The code seems to work well, and was copied from https://mathematica.stackexchange.com/ques-
tions/46037/mathematica-implementation-of-householder-s-method/115229#115229, where it was
seen in the post of Rikohai. I don’t know how to put it into the form of a reusable block or
module.

0.98 -−0.441814 0
-−0.441814 0.870164 0.371803

0 0.371803 0.489836

3.
7 2 3
2 10 6
3 6 7

m2 =
7 2 3
2 10 6
3 6 7

{{7, 2, 3}, {2, 10, 6}, {3, 6, 7}}

A = N[{{7, 2, 3}, {2, 10, 6}, {3, 6, 7}}];
(*⋆A=N[

{{-−42,43,-−2,28},{43,-−98,72,-−26},{-−2,72,-−96,53},{28,-−26,53,54}}];*⋆)
n = Length[A[[1]]];
zeroVector = {};
For[i = 1, i ≤ n, i++, zeroVector = Append[zeroVector, {0}]];
Alist = {A};
Hlist = {};

Forj = 1, j ≤ n -− 2, j++, If[A[[j + 1, j]] ≥ 0, c = 1, c = 2];
alpha = (-−1)^c (Sum[A[[k, j]]^2, {k, j + 1, n}])^(1 /∕ 2);
r = ((1 /∕ 2) alpha^2 -− (1 /∕ 2) alpha A[[j + 1, j]])^(1 /∕ 2);
x = zeroVector;
x[[j + 1, 1]] = (A[[j + 1, j]] -− alpha)  (2 r);

Fork = j + 2, k ≤ n, k++, x[[k, 1]] = A[[k, j]]  (2 r);
H = IdentityMatrix[n] -− 2 x.Transpose[x];
A = H.A.H;
Hlist = Append[Hlist, H];
Alist = Append[Alist, A];

MatrixForm[Chop[A]]

Again, Rikohai’s code duplicates the text’s answer.

7. -−3.60555 0
-−3.60555 13.4615 3.69231

0 3.69231 3.53846

6 - 9 QR-factorization
Do three QR-steps to find approximations of the eigenvalues of:

7. The matrix in the answer to problem 3.

As the documentation for QRDecomposition states, the result of the operation is a pair of
matrices, q an orthogonal matrix to the input matrix, and r an upper diagonal matrix. When
combined with the dotting maneuver shown below, a matrix is produced, the diagonal of
which consists of approximations of the eigenvalues. Following a lengthy enough iterative
series, the approximations become close to actual.

2 20.9 Tridiagonalization and QR-Factorization 888.nb

As the documentation for QRDecomposition states, the result of the operation is a pair of
matrices, q an orthogonal matrix to the input matrix, and r an upper diagonal matrix. When
combined with the dotting maneuver shown below, a matrix is produced, the diagonal of
which consists of approximations of the eigenvalues. Following a lengthy enough iterative
series, the approximations become close to actual.
Clear["Global`*⋆"]

m1 =
7.` -−3.605551275463989` 0

-−3.605551275463989` 13.46153846153846` 3.6923076923076916`
0 3.6923076923076916` 3.5384615384615383`

{{7., -−3.60555, 0}, {-−3.60555, 13.4615, 3.69231}, {0, 3.69231, 3.53846}}

Eigenvalues[m1]

{16., 6., 2.}

{q, r} = QRDecomposition[m1]

{{{-−0.889001, 0.457905, 0.}, {-−0.431124, -−0.837006, -−0.336976},
{-−0.154303, -−0.299572, 0.941513}}, {{-−7.87401, 9.36945, 1.69073},
{0., -−10.9572, -−4.28286}, {0., 0., 2.22539}}}

a = r.Transpose[q]

11.2903, -−5.01735, 6.66134 × 10-−16,

{-−5.01735, 10.6144, -−0.749906}, {0., -−0.749906, 2.09524}

{q1, r1} = QRDecomposition[a]

{{{-−0.913829, 0.4061, 0.}, {-−0.404169, -−0.909483, 0.0974049},
{0.0395561, 0.0890114, 0.995245}}, {{-−12.355, 8.89552, -−0.304536},
{0., -−7.69885, 0.886113}, {0., 0., 2.01852}}}

a1 = r1.Transpose[q1]

14.9028, -−3.1265, -−2.22045 × 10-−16,

{-−3.1265, 7.08828, 0.196614}, {0., 0.196614, 2.00893}

{q2, r2} = QRDecomposition[a1]

{{{-−0.978694, 0.205323, 0.}, {-−0.205223, -−0.978217, -−0.0312166},
{-−0.00640949, -−0.0305515, 0.999513}}, {{-−15.2272, 4.51528, 0.0403694},
{0., -−6.29839, -−0.255043}, {0., 0., 2.00194}}}

a2 = r2.Transpose[q2]

15.8299, -−1.2932, -−6.93889 × 10-−17,

{-−1.2932, 6.16916, -−0.0624937}, {0., -−0.0624937, 2.00096}

The green cells above match the answer in the text for this problem to an accuracy of at
least 4S. I was surprised at the closeness of the agreement.

20.9 Tridiagonalization and QR-Factorization 888.nb 3

The green cells above match the answer in the text for this problem to an accuracy of at
least 4S. I was surprised at the closeness of the agreement.

9.
140 10 0
10 70 2
0 2 -−30

Clear["Global`*⋆"]

m2 =
140 10 0
10 70 2
0 2 -−30

{{140, 10, 0}, {10, 70, 2}, {0, 2, -−30}}

N[Eigenvalues[m2]]

{141.401, 68.6392, -−30.0402}

{q, r} = QRDecomposition[m2];

a = r.Transpose[N[q]]

141.066, 4.92592, 2.77556 × 10-−17,

{4.92592, 68.9666, 0.869129}, {0., 0.869129, -−30.0326}

{q1, r1} = QRDecomposition[a];

a1 = r1.Transpose[N[q1]]

141.322, 2.39952, -−1.73472 × 10-−17,

{2.39952, 68.717, 0.379731}, {0., 0.379731, -−30.0388}

{q2, r2} = QRDecomposition[a1];

a2 = N[r2.Transpose[q2]]

141.382, 1.16574, 5.20417 × 10-−18,

{1.16574, 68.6576, 0.166124}, {0., 0.166124, -−30.0399}

The answer in the four green cells above match the text answer to an accuracy of 4S.

4 20.9 Tridiagonalization and QR-Factorization 888.nb

